
Returning values from functions

Functions may return one value to the place from which they were called. This value may be a literal, a variable, or a
mathematical expression (anything that normally may go on the right side of an assignment statement).

def name_of_function(param1, param2, ...):
 statement
 statement
 [more statements if you want]
 return value
 # in real code, replace “value” above with a variable, literal, or math

The only new syntax here is the return keyword. Whenever Python encounters a line of code that says “return
something,” the function immediately ends, and the “something” is sent back to the place where the function was
called.

Capturing the return value

When you call a function that returns a value, if you want to use that value later (as you probably do), you need to
“capture” it. The easiest way to do this is to use a variable assignment statement:

some_variable = name_of_function(arg1, arg2, ...)

Whenever Python sees a line like the one above, Python calls the function as it normally would, but when the function
returns its value (whatever that value is), it is saved into the variable some_variable. The end result is now the code
that called the function can use the value that the function calculated, because you have your own copy of it now.

Examples:

def square(x):
 return x * x

def larger(a, b):
 if a > b:
 return a
 else:
 return b

def main():
 num = int(input(“Give me a number: “))
 num_sq = square(num) # Call square, capture return value in num_sq
 larger_one = larger(num, num_squared) # Call larger, capture return value in larger_one
 print(“Number is”, num)
 print(“Number squared is”, num_sq)
 print(“The larger one is”, larger_one)

